Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nathaniel L Matteson; Gabriel W Hassler; Ezra Kurzban; Madison A Schwab; Sarah A Perkins; Karthik Gangavarapu; Joshua I Levy; Edyth Parker; David Pride; Abbas Hakim; Peter De Hoff; Willi Cheung; Anelizze Castro-Martinez; Andrea Rivera; Anthony Veder; Ariana Rivera; Cassandra Wauer; Jacqueline Holmes; Jedediah Wilson; Shayla N Ngo; Ashley Plascencia; Elijah S Lawrence; Elizabeth W Smoot; Emily R Eisner; Rebecca Tsai; Marisol Chacon; Nathan A Baer; Phoebe Seaver; Rodolfo A Salido; Stefan Aigner; Toan T Ngo; Tom Barber; Tyler Ostrander; Rebecca Fielding-Miller; Elizabeth H Simmons; Oscar E Zazueta; Idanya Serafin-Higuera; Manuel Sanchez-Alavez; Jose L Moreno-Camacho; Abraham Garcia-Gil; Ashleigh R Murphy Schafer; Eric McDonald; Jeremy Corrigan; John D Malone; Sarah Stous; Seema Shah; Niema Moshiri; Alana Weiss; Catelyn Anderson; Christine M Aceves; Emily G Spencer; Emory C Hufbauer; Justin J Lee; Karthik S Ramesh; Kelly N Nguyen; Kieran Saucedo; Refugio Robles-Sikisaka; Kathleen M Fisch; Steven L Gonias; Amanda Birmingham; Daniel McDonald; Smruthi Karthikeyan; Natasha K Martin; Robert T Schooley; Agustin J Negrete; Horacio J Reyna; Jose R Chavez; Maria L Garcia; Jose M Cornejo-Bravo; David Becker; Magnus Isaksson; Nicole L Washington; William Lee; Richard S Garfein; Marco A Luna-Ruiz Esparza; Jonathan Alcantar-Fernandez; Benjamin Henson; Kristen Jepsen; Beatriz Olivares-Flores; Gisela Barrera-Badillo; Irma Lopez-Martinez; Jose E Ramirez-Gonzalez; Rita Flores-Leon; Stephen F Kingsmore; Alison Sanders; Allorah Pradenas; Benjamin White; Gary Matthews; Matt Hale; Ronald W McLawhon; Sharon L Reed; Terri Winbush; Ian H McHardy; Russel A Fielding; Laura Nicholson; Michael M Quigley; Aaron Harding; Art Mendoza; Omid Bakhtar; Sara H Browne; Jocelyn Olivas Flores; Diana G Rincon Rodriguez; Martin Gonzalez Ibarra; Luis C Robles Ibarra; Betsy J Arellano Vera; Jonathan Gonzalez Garcia; Alicia Harvey-Vera; Rob Knight; Louise C Laurent; Gene W Yeo; Joel O Wertheim; Xiang Ji; Michael Worobey; Marc A Suchard; Kristian G Andersen; Abraham Campos-Romero; Shirlee Wohl; Mark Zeller.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.14.23287217

ABSTRACT

The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of SARS-CoV-2 lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of 'local' when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.27.22269922

ABSTRACT

Regional connectivity and land-based travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions such as Europe. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the wider Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding from Europe in the early pandemic to more regional seeding for the period travel restrictions were in place. We show that land-based travel, particularly freight transport, drove introduction risk during the period of travel restrictions. Consistently, high regional connectivity and land-based travel also disproportionately drove Jordan's export risk to other Middle Eastern countries. Our findings emphasize regional connectedness and land-based travel as drivers of viral transmission in the Middle East. This demonstrates that strategies aiming to stop or slow the spread of viral introductions (including new variants) with travel restrictions need to prioritize risk from land-based travel alongside intercontinental air travel to be effective.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.30.21268453

ABSTRACT

As demonstrated during the SARS-CoV-2 pandemic, detecting and tracking the emergence and spread of pathogen variants is an important component of monitoring infectious disease outbreaks. Pathogen genome sequencing has emerged as the primary tool for variant characterization, so it is important to consider the number of sequences needed when designing surveillance programs or studies, both to ensure accurate conclusions and to optimize use of limited resources. However, current approaches to calculating sample size for variant monitoring often do not account for the biological and logistical processes that can bias which infections are detected and which samples are ultimately selected for sequencing. In this manuscript, we introduce a framework that models the full process from infection detection to variant characterization and demonstrate how to use this framework to calculate appropriate sample sizes for sequencing-based surveillance studies. We consider both cross-sectional and continuous sampling, and we have implemented our method in a publicly available tool that allows users to estimate necessary sample sizes given a specific aim (e.g., variant detection or measuring variant prevalence) and sampling method. Our framework is designed to be easy to use, while also flexible enough to be adapted to other pathogens and surveillance scenarios.


Subject(s)
Communicable Diseases
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268143

ABSTRACT

As SARS-CoV-2 becomes an endemic pathogen, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20174136

ABSTRACT

Background: The early COVID-19 pandemic has been characterized by rapid global spread. In the United States National Capital Region, over 2,000 cases were reported within three weeks of its first detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2, the virus that causes COVID-19, in the region. By correlating genetic information to disease phenotype, we also aimed to gain insight into any correlation between viral genotype and case severity or transmissibility. Methods: We performed whole genome sequencing of clinical SARS-CoV-2 samples collected in March 2020 by the Johns Hopkins Health System, building on methods developed by the ARTIC network. We analyzed these regional SARS-CoV-2 genomes alongside detailed clinical metadata and the global phylogeny to understand early establishment of the virus within the region. Results: We analyzed 620 samples from the Johns Hopkins Health System collected between March 11-31, 2020, comprising 37.3% of the total cases in Maryland during this period. We selected 143 of these samples for sequencing, generating 114 complete viral genomes. These genomes belonged to all five major Nextstrain-defined clades, suggesting multiple introductions into the region and underscoring the diversity of the regional epidemic. We also found that clinically severe cases had genomes belonging to all of these clades. Conclusions: We established a pipeline for SARS-CoV-2 sequencing within the Johns Hopkins Health system, which enabled us to capture the significant viral diversity present in the region as early as March 2020. Efforts to control local spread of the virus were likely confounded by the number of introductions into the region early in the epidemic and interconnectedness of the region as a whole.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.05.20168963

ABSTRACT

Repeat molecular testing for SARS-CoV-2 may result in scenarios including multiple positive results, positive test results after negative tests, and repeated false negative results in symptomatic individuals. Consecutively collected specimens from a retrospective cohort of COVID-19 patients at the Johns Hopkins Hospital were assessed for RNA and infectious virus shedding. Whole genome sequencing confirmed the virus genotype in patients with prolonged viral RNA shedding and droplet digital PCR (ddPCR) was used to assess the rate of false negative standard of care PCR results. Recovery of infectious virus was associated with Ct values of 18.8 {+/-} 3.4. Prolonged viral RNA shedding was associated with recovery of infectious virus in specimens collected up to 20 days after the first positive result in patients who were symptomatic at the time of specimen collection. The use of Ct values and clinical symptoms provides a more accurate assessment of the potential for infectious virus shedding.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL